Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Med ; 54(12): 1467-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23095938

RESUMO

OBJECTIVE: We investigated how cells respond to the induction of DNA damage, focusing specifically on mRNA expression levels of cell regulatory and DNA repair genes under exposure to benzene. METHOD: The study sample was classified into three groups: direct exposure to benzene (A), indirect exposure to benzene (B), and non-exposed (C). Concentrations of benzene in the air of workplaces were monitored. Further blood biochemical parameters, cell cycle-regulated and DNA damage-related genes expression were analyzed. RESULTS: The mRNA expression levels of Apel, Rad51, Bcl-2, Bax, Xpa, and Xpc genes were significantly down-regulated in groups A and B, with a dramatic up-regulation of p21 gene in group A accompanied by significantly lower counts of white blood cells, hemoglobin, platelets and lymphocyte subsets of CD8+, CD4+, T and B cells. CONCLUSION: The results indicated that exposure to benzene had significantly altered mRNA expression of some critical cell regulatory and DNA repair genes.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Benzeno/efeitos adversos , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , RNA Mensageiro/metabolismo , Adulto , Poluentes Ocupacionais do Ar/análise , Apelina , Benzeno/análise , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Indústria Química , China , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Exposição Ocupacional/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Inquéritos e Questionários , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
Artigo em Chinês | MEDLINE | ID: mdl-22214149

RESUMO

OBJECTIVE: To explore the association of polymorphisms of metabolizing enzyme genes with chronic benzene poisoning (CBP) comprehensively by case-control design. METHODS: 152 CBP patients and 152 workers occupationally exposed to benzene without poisoning manifestations were investigated. 30 single nucleotide polymorphisms (SNPs) in 13 genes such as CYP2E1 were tested by PCR-RFLP, sequencing approaches. Logistic regression model was used to detect main effects and 2-order interaction effects of gene and/or environment. Multifactor dimensionality reduction (MDR) was used to detect high-order gene-gene or gene-environment interactions. RESULTS: Based on logistic regression, the main effects of GSTP1 rs947894, EPHX1 rs1051740, CYP1A1 rs4646903, CYP2D6 rs1065852 and rs1135840 were found to be significant (P < 0.05) while the confounding factors of sex, cigarette smoking, alcohol consumption and the intensity of benzene exposure were controlled. EPHX1 rs1051740 might be associated with CBP (P = 0.06). There existed 3 types of interactions were as followed: interactions of GSTP1 rs947894 with alcohol consumption, CYP2E1 rs3813867 with EPHX1 rs3738047, EPHX1 rs3738047 with alcohol consumption(P < 0.05), while the main effects of CYP2E1 rs3813867 and EPHX1 rs3738047 were not significant (P > 0.05). The other SNPs did not show any significant associations with CBP. According to MDR, a 3-order interaction with the strongest combined effect was found, i.e. the 3-factor combination of CYP1A1 rs4646903, CYP2D6 rs1065852 and CYP2D6 rs1135840. CONCLUSION: Gene-gene, gene-environment interactions are important mechanism to genetic susceptibility of CBP.


Assuntos
Benzeno/intoxicação , Citocromo P-450 CYP2E1/genética , Exposição Ocupacional , Adulto , Estudos de Casos e Controles , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2D6/genética , Epóxido Hidrolases/genética , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Redução Dimensional com Múltiplos Fatores , Polimorfismo de Nucleotídeo Único , Adulto Jovem
3.
Carcinogenesis ; 29(12): 2325-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18784359

RESUMO

It is widely accepted that the cytotoxicity and genotoxicity of benzene results from the action of reactive metabolites. Therefore, genetic variation in metabolic enzyme genes may contribute to susceptibility to chronic benzene poisoning (CBP) in the exposed population. Using a case-control study that included 268 benzene-poisoned patients and 268 workers occupationally exposed to benzene in South China, we aimed to investigate the association between single-nucleotide polymorphisms in genes with phase I and II of metabolism and risk of CBP. The TaqMan technique was used to detect polymorphisms of CYP1A1, CYP1A2, CYP1B1, ADH1B, EPHX1, EPHX2, NQO1, MPO, GSTP1 and UGT1A6 genes. We also explored potential interactions of these polymorphisms with lifestyle factors such as cigarette smoking and alcohol consumption. A weak positive association was found between glutathione S-transferase pi-1 (GSTP1) rs1695 polymorphism and the risk of CBP (P = 0.046), but this association was not statistically significant (P = 0.117) after adjustment for potential confounders. Further analysis showed that the risk of CBP increased in the subjects with EPHX1 GGAC/GAGT diplotype (P = 0.00057) or AGAC/GAGT diplotype (P = 0.00086). In addition, we found that alcohol drinkers with the EPHX1 rs3738047 GA + AA genotypes and non-alcohol drinkers with the GSTP1 rs1695 AA genotype tended to be more susceptible to benzene toxicity. Our results suggest that genetic polymorphisms in EPHX1 may contribute to risk of CBP in a Chinese occupational population.


Assuntos
Benzeno/intoxicação , Predisposição Genética para Doença , Desintoxicação Metabólica Fase II/genética , Desintoxicação Metabólica Fase I/genética , Exposição Ocupacional , Adolescente , Adulto , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Povo Asiático , Estudos de Casos e Controles , Doença Crônica , Epóxido Hidrolases/genética , Feminino , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fumar/epidemiologia , Fumar/genética
4.
J Toxicol Environ Health A ; 70(11): 916-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17479406

RESUMO

Metabolic enzymes involved in benzene activation or detoxification, including cytochrome P-450 1A1 (CYP1A1), cytochrome P-450 2D6 (CYP2D6), UDP-glucuronosyltransferase 1A6 (UGT1A6), UDP-glucuronosyltransferase1A7 (UGT1A7), and sulfotransferase 1A1 (SULT1A1), were studied for their roles in human susceptibility to benzene poisoning. All 304 subjects were investigated with a unitary questionnaire and their DNA was isolated from blood samples by a routine phenol-chloroform extraction. The study included 152 benzene poisoning patients, and 152 control workers occupationally exposed to benzene in South China. The genotypes were determined by polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP) technique with genomic DNA. No individuals had the CYP 2D6 c.212 G>A variant alleles in this study. There is no association between the UGT1A6 c.181 T>A, UGT1A7 c.208 Trp>Arg, and SULT1A1 c.638 G>A genotypes and increased risk of benzene-induced carcinogenesis. Although most of the CYP2D6 haplotypes did not show any significant difference, the CYP2D6 haplotype CYP2D6 c.188 C/C, C/T, and c.4268 C/C was significantly overrepresented in the case group (OR 4.02, 95% CI: 2.53-6.39) compared with in controls. Overall, our data suggested that individuals with CYP1A1 c.5639 T/T, CYP2D6 c.188 C/C, C/T, and CYP2D6 c.4268 C/C genotypes tend to be more susceptible to benzene toxicity.


Assuntos
Benzeno/intoxicação , Enzimas/genética , Predisposição Genética para Doença , Doenças Profissionais/genética , Polimorfismo de Fragmento de Restrição , Solventes/intoxicação , Adulto , Arilsulfotransferase/genética , Benzeno/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2D6/genética , Impressões Digitais de DNA , Enzimas/metabolismo , Feminino , Frequência do Gene , Genótipo , Glucuronosiltransferase/genética , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologia , Exposição Ocupacional , Solventes/metabolismo
5.
Artigo em Chinês | MEDLINE | ID: mdl-16889694

RESUMO

OBJECTIVE: To explore the relationship between genetic polymorphisms in apurinic/apyrimidinic endonuclease (APE1) and ADP ribosyltransferase (ADPRT) and individuals' susceptibility to chronic benzene poison ing (BP). METHODS: A case-control study was conducted. One hundred and fifty-two B P patients and 152 workers occupationally exposed to benzene without poisoning manifestations were investigated. The mismatched bases combined to create restriction site with restrained fragment length polymorphism technique (CRS-RFLP) was used for detecting the single nucleotide polymorphisms (SNPs) at Asp148Glu of APE1 gene and Val762Ala of ADPRT gene. RESULTS: There was no significant difference in the distribution of genotypes of APE1Asp148Glu and ADPRTVal762Ala between the patients and the control groups. Compared with individuals having genotype of APE1Asp148Glu T/T without habit of alcohol consumption, there was a 4.13 times increased risk of BP for the alcohol user with genotype of APE1Asp148Glu T/T (OR = 4.13, 95% CI: 1.07 - 15.85, P = 0.03). The analysis of Logistic regression showed that smoking may play some role in modifying the risk of cironic benzene poisoning (OR = 0.33, 95% CI: 0.14 - 0.75, P = 0.01). CONCLUSION: The genetic polymorphisms in APE1Asp148Glu, ADPRTVal762Ala are not related to the risk of BP. Potential interaction is found between alcohol consumption and polymorphism of APE1Asp148Glu. Further study is needed to elucidate this interaction.


Assuntos
Benzeno/intoxicação , Predisposição Genética para Doença , Exposição Ocupacional , Polimorfismo Genético , ADP Ribose Transferases , Consumo de Bebidas Alcoólicas/genética , Estudos de Casos e Controles , Doença Crônica , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Genótipo , Humanos , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único
6.
Artigo em Chinês | MEDLINE | ID: mdl-16737584

RESUMO

OBJECTIVE: To explore the relationship between genetic polymorphisms of CYP-1A1 and CYP2D6 and risks of chronic benzene poisoning (BP). METHODS: A case control study was conducted. 152 BP patients and 152 workers occupationally exposed to benzene without poisoning manifestations were involved. Polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) technology was used for detecting the single nucleotide polymorphisms (SNPs) of MspI in the non-coding region of CYP-1A1 gene and c.188, g.212 position in the first extron of CYP2D6 gene. RESULTS: The individuals with CYP1A1 MspI T/T genotype had a 1.32 times (95% CI: 1.05 approximately 1.65, P = 0.02) increased risk of BP compared with those carrying T/C and C/C genotypes. In no-smoking population, there was a 1.56 times (95% CI: 1.15 approximately 2.12, P = 0.003) increased risk of BP for subjects carrying CYP1A1 MspIT/T genotype compared with those carrying T/C and C/C genotypes. The individuals carrying CYP2D6 c.188 C/C or C/T genotype had a 1.23 times (95% CI: 1.05 approximately 1.42, P = 0.01) increased risk compared with those carrying T/T genotypes. In no-smoking population, there was a 1.23 times (95% CI: 1.04 approximately 1.47, P = 0.01) increased risk of BP for subjects carrying CYP2D6 c.188 C/C or C/T genotypes compared with those carrying T/T genotype. The single nucleotide polymorphism of g.212 position in the first extron of CYP2D6 gene had not been validated. CONCLUSION: The individuals with CYP2D6 c.188 C/C, CYP2D6 c.188 C/T and CYP1A1 MspIT/T genotypes tend to be more susceptible to benzene toxicity.


Assuntos
Benzeno/intoxicação , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2D6/genética , Predisposição Genética para Doença , Doenças Profissionais/genética , Adolescente , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
7.
Artigo em Chinês | MEDLINE | ID: mdl-16600130

RESUMO

OBJECTIVE: To explore the relationship between genetic polymorphisms in hMTH1, hOGG1 and hMYH and risks of chronic benzene poisoning (CBP). METHODS: A case control study was conducted. One hundred and fifty-two BP patients and 152 workers occupationally exposed to benzene without poisoning manifestations were investigated. The polymerase chain reaction restrained fragment length polymorphism technique (PCR-RFLP) was applied to detect the single nucleotide polymorphisms (SNPs) on c.83 of hMTH1 gene, c.326 of hOGG1 gene and c.335 of hMYH gene. RESULTS: There were 2.51 times (OR(adj) = 2.51, 95% CI: 1.14-5.49, P = 0.02) and 2.49 times (OR(adj) = 2.49, 95% CI: 1.52-4.07, P < 0.01) risks of BP for individuals carrying genotypes of hMTH1c.83Val/Met + Met/Met or hOGG1c.326Cys/Cys compared with individuals carrying genotypes of hMTH1c.83Val/Val or hOGG1c.326Ser/Cys + Ser/Ser, respectively. Compared with individuals carrying genotypes of hOGG1c.326Cys/Cy and hMYHc.335 is/His at the same time, there was 0.33 times (OR(adj) = 0.33, 95% CI = 0.15-0.72, P = 0.01) risks of BP for these with genotypes of hOGG1c.326Ser/Cys + Ser/Ser and hMYHc.335His/Gln + Gln/Gln simultaneously. In the smoking group, there was 0.15 times (OR(adj) = 0.15, 95% CI: 0.03-0.68, P = 0.01) risks of BP for subjects carrying genotypes of hMYHc.335His/Gln + Gln/Gln compared with these carrying genotypes of hMYHc.335His/His. CONCLUSION: Polymorphisms of hMTH1 Val83 Met and hOGG1 Ser326Cys may contribute to altered risks of CBP, and potential interaction may exist among polymorphisms of hOGG1 Ser326Cys and hMYH His335Gln.


Assuntos
Benzeno/intoxicação , DNA Glicosilases/genética , Enzimas Reparadoras do DNA/genética , Exposição Ocupacional , Monoéster Fosfórico Hidrolases/genética , Polimorfismo Genético , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
8.
World J Gastroenterol ; 11(37): 5821-7, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16270392

RESUMO

AIM: To analyze occupational health hazards exposure to doses lower than the Chinese occupational health standard in a selected VC polymerization plant in China, and also to elucidate the relationship between genetic polymorphisms and genetic susceptibility on liver lesions of workers exposed to vinyl chloride monomer(VCM). METHODS: In order to explore the mechanism of VCM-related health effects, we used a case-control design to investigate the association between the genetic polymorphisms of metabolic enzymes and liver lesions in workers occupationally exposed to VCM. Genotypes of CYP2E1, GSTT1, GSTM1, ALDH2 and ADH2 were identified using PCR and PCR-RFLP. RESULTS: Even when the concentration of VCM was lower than the current Chinese occupational health standard, neurasthenia, pharyngeal irritation, liver ultrasonography abnormalities and hemoglobin disorders were significantly higher in exposure subjects compared to non-exposure subjects, and the relative risks (RR and 95% CI) were 1.74 (1.06-2.85), 1.97 (1.56-2.48), 10.69 (4.38-26.12), and 2.07 (1.20-3.57). CYP2E1 c1c2/c2c2 genotype was significantly associated with liver damages (OR 3.29, 95% CI 1.51-7.20, P<0.01). CONCLUSION: The incidences of neurasthenia and liver ultrasonography abnormalities significantly increase when the cumulative exposure dose increases. The genotypes of metabolic enzymes (CYP2E1 c1c2/c2c2, null GSTT1 and ADH2 1-1) play important roles in VCM metabolism. Polymorphisms of CYP 2E1, GSTT1 and ADH2 may be a major reason of genetic susceptibility in VCM-induced hepatic damage.


Assuntos
Enzimas/genética , Predisposição Genética para Doença , Fígado , Exposição Ocupacional , Polimorfismo Genético , Cloreto de Vinil/toxicidade , Estudos de Casos e Controles , Indústria Química , China , Genótipo , Humanos , Exposição por Inalação , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Análise de Regressão , Estatística como Assunto
9.
Artigo em Chinês | MEDLINE | ID: mdl-15256146

RESUMO

OBJECTIVE: To explore the effects of interaction between environmental exposure factors and genetic polymorphism in toxicant metabolizing enzymes on risk of occupational chronic benzene poisoning. METHODS: One hundred and fifty-two cases of chronic benzene poisoning were analyzed for the risk by case-only study. RESULTS: The frequency of non-null GSTT1 gene in benzene poisoning workers with moderate benzene exposure level was higher than that in cases with lower benzene exposure (68.63% vs 38.00%, OR(adj) = 4.32, 95% CI 1.75 - 10.66, P = 0.002). The frequency of NQO1 C.609T/T gene in alcohol drinking group was higher than that in non-drinking group (61.11% vs 20.00%, OR(adj) = 8.03, 95% CI 2.28 - 28.25, P = 0.001), moreover, it was higher in workers with smoking and drinking than that in the rest group, and in drinking x exposure level workers than that in non-drinking x exposure level workers (85.71% vs 22.76%, OR(adj) = 18.62, 95% CI 2.01 - 172.72, P = 0.01 and 61.11% vs 20.00%, OR(adj) = 3.18, 95% CI 1.55 - 6.52, P = 0.002 respectively). The frequency of non-null GSTM1 gene was also higher in drinking x exposure level workers than that in non-drinking x exposure level workers (66.67% vs 47.06%, OR(adj) = 1.99, 95% CI 1.05 - 3.76, P = 0.036). CONCLUSION: There is interaction between the polymorphism of GSTT1 gene and moderate benzene exposure level; non-null GSTM1 gene and drinking x exposure level increase the risk of occupational chronic benzene poisoning; polymorphism of NQO1 gene C.609 also interacts with drinking, while polymorphism of NQO1 gene and drinking x smoking may further increase the risk of occupational chronic benzene poisoning.


Assuntos
Benzeno/intoxicação , Citocromo P-450 CYP2E1/genética , Glutationa Transferase/genética , Doenças Profissionais/genética , Polimorfismo de Fragmento de Restrição , Adulto , Benzeno/metabolismo , Citocromo P-450 CYP2E1/biossíntese , Citocromo P-450 CYP2E1/farmacologia , Feminino , Predisposição Genética para Doença , Genótipo , Glutationa Transferase/biossíntese , Glutationa Transferase/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/biossíntese , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/farmacologia , Doenças Profissionais/enzimologia , Reação em Cadeia da Polimerase , Fatores de Risco
10.
Artigo em Chinês | MEDLINE | ID: mdl-15256148

RESUMO

OBJECTIVE: To explore the relationship between genetic polymorphisms of microsomal epoxide hydrolase (mEH) and susceptibility of chronic benzene poisoning (BP). METHOD: A case-control study was conducted. 152 BP patients and 152 workers occupationally exposed to benzene without poisoning manifestations were investigated. Polymerase chain reaction-restrained fragment length polymorphism technique (PCR-RFLP) was applied to detect the single nucleotide polymorphisms (SNPs) on c.113 and c.139 of mEH gene. RESULTS: The risk of BP for individuals carrying mEHc.113 C/C genotype was 0.60 (OR = 0.60, 95% CI: 0.37 - 0.97, P = 0.04) of those carrying T/T and T/C genotypes. In non-smoking population, the risk of BP for subjects carrying mEHc.113 C/C genotype was 0.56 (OR = 0.56, 95% CI: 0.33 - 0.96, P = 0.03) of those carrying T/T and T/C genotypes, and in non-drinking population, the individuals carrying mEHc.113 C/C genotype was 0.51 (OR = 0.51, 95% CI: 0.30 - 0.86, P = 0.01) of those carrying T/T and T/C genotypes. CONCLUSION: The subjects carrying mEHc.113 C/C genotype and together with non-smoking or non-drinking habit may have lower risk of chronic benaene poisoning.


Assuntos
Benzeno/intoxicação , Epóxido Hidrolases/genética , Predisposição Genética para Doença , Doenças Profissionais/genética , Polimorfismo de Fragmento de Restrição , Adulto , Benzeno/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Mutação Puntual , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...